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Abstract

excitation (PE) conditions are overly stringent for ensuring expo-
tracking error in overparametrized adaptive feedforward systems.

Rather, only positive definiteness of a certain “confluence” matrix is required. The conflu-
ence matrix condition is easily satisfied and replaces the usual condition for positive defi-
niteness of the “autocorrelation”  matrix (i.e., the standard PE condition). This is important
because the PE condition is unnecessarily stringent and essentially impossible to satisfy for
overparametrized systems. It is concluded that the only penalties for overparametrization are
that the optimal exponential rate of tracking error convergence is degraded by the condition
number of the confluence matrix, and that the parameter errors converge exponentially on a
reduced subspace rather than over the entire space. As a case study, the confluence matrix
is examined in detail for the case of a Tap Delay-Line regressor with sinusoid excitation.

1 INTRODUCTION

In 1980, Bitmead and Anderson [8] proved that parameter convergence is exponential  when
persistent excitation (PE) conditions are satisfied in the adaptive gradient algorithm. One im-
portant consequence of exponential parameter convergence, is that the tracking error (which
is typically linear in the parameter error) also converges exponentially. This relationship gives
the (false) impression that exponential tracking error convergence requires the same stringent
PE conditions as parameter convergence. Interestingly, there are several indications to the
contrary. Using an approximate linear analysis, Glover [9] indicated as early as 1977 that
exponential convergence of the tracking error is possible in the adaptive gradient algorithm
with an overparametrized Tap Delay-Line regressor, and sinusoidal excitation, without any
conditions on parameter convergence. More recently, Johansson [12] used a complete end-to-
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end Lyapunov analysis to demonstrate exponential tracking error convergence (to a bounded
set) for a model reference adaptive control (MRAC)  algorithm without persistent excitation
or parameter convergence.

Motivated by Glover’s  results [9], this paper continues the investigation of exponential
tracking error convergence in adaptive feedforward systems, with relaxed conditions on pa-
rameter convergence and persistent excitation. The paper extends Glover’s results in the
following directions,

1.

2,

3.

4.

The regressor basis can now be chosen arbitrary, compared to Glover’s  restriction to
the Tap Delay-Line basis.

Glover’s analysis rigorously requires that the number of taps goes to infinity (infinitely
long regression vectors) to ensure exponential convergence. This was needed in his
analysis to eliminate certain time-varying terms which prevented a purely linear time-
invariant (LTI) stability argument based on pole locations of Laplace transforms. In the
present analysis, the time-varying terms are part of the formulation, and the analysis
is valid for the more realistic case of finite-length regressors.

Any excitation (with a certain PE reduction) can now be used compared to Glover’s
analysis which required sinusoidal excitation.

The present analysis is applicable to a broad class of adaptive feedforward algorithms
while Glover’s analysis was proved only for the LMS algorithm.

The first two extensions were also achieved in an earlier paper [2] at the cost of a some-
what restrictive condition on the regressor, i.e., by assuming that the regressor is a periodic
function. This periodic assumption is not required in the present analysis.

A brief background is given in Section 2, where the confluence matrix is defined. The main
results given in Section 3 show that if the confluence matrix is positive definite the adaptive
feedforward operator ?-f from error e to estimate j is input-output equivalent to an adaptive
system with a PE regressor. This implies that tracking error convergence will be exponential

“ for a large class of overparametrized adaptive feedforward systems without satisfying PE. In
effect, the condition for positive definiteness of the confluence matrix replaces the standard
condition for positive dejniteness  of the “autocorrelaiion” matrix  (i.e., the well-known PE
condition) found in textbooks [11][13][14]. This distinction is crucial for overparametrized
adaptive systems which cannot satisfy PE, while they still may be designed to satisfy the
weaker confluence matrix condition.

The main penalty incurred from overparametrizing comes from a reduction in the expo-
nential rate of convergence compared to the full PE case. Specifically, it is shown in Section 4
for the adaptive gradient algorithm that the optimal exponential convergence rate degrades in
proportion to the condition number of the confluence matriz.  To give a sense for the amount
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of degradation, a case study is given in Section 5 analyzing adaptive systems with over-
parametrized Tap Delay Line regressors and sinusoidal excitation. This special system was
also studied by Glover, and allows his earlier results to be put into perspective. Conclusions
are postponed until Section 6. ,,

Good adaptive tracking performance is required in many applications where it is often
not desirable or even possible to satisfy PE conditions [15]. The results in this paper indi-
cate that the conditions for exponential tracking error convergence are considerably weaker
than previously thought. The weakened condition implies that tracking error convergence is
exponential for a large class of overparametrized adaptive feedforward systems with a wide
range of possible regressor basis functions, excitations, and adaptation laws. This has many
implications for the design of better adaptive feedforward systems in the future.

2 BACKGROUND

2.1 Adaptive Feedforward Systems

An estimate j of some signal y is to be constructed as a linear combination of the elements
of a regressor vector x(t) E RN, i.e.,

Estimated Signal
ij = w(i)L(t) (2.1)

where w(t) c RN is a parameter vector which is tuned in real-time using the adaptation
algorithm,

Adaptation Algorithm
(2.2)w = pr(p)[~(~)e(~)l

Here, I’(p) [.] denotes the multivariable  LTI transfer function I’(s). 1 where I’(s) is any S1S0
LTI transfer function in the Laplace s operator (the differentiation operator p will replace the
Laplace operator s in all time-domain filtering expressions); the term e(t) ~ R1 is an error
signal; p > 0 is an adaptation gain; and the signal ii is obtained by filtering the regressor x
through any stable filter F(p), i.e.,

Regressor Filtering
i = F(p)[x] (2.3)

The notation F(p)[”]  denotes the multivariable  LTI transfer function F(s) 01 with S1S0 filter
F(s), acting on the indicated vector time domain signal.

Equations (2. 1)-(2.3) taken together will be referred to as an adaptive jeedjorward system.
Collectively, these equations define an important open-loop mapping from the error signal
e to the estimated output j. Because of its importance, the mapping from e to j will be
denoted by the special character M, i.e.,
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7j = H[e]

The special structure of ?-l is depicted in Figure 2.1.

(2.4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1: LTV operator j = fi[e] for adaptive system with regressor k, adaptation law
I’(s),  and regressor filter I’(s)

REMARK 2.1 The definition of I’(s) is left intentionally general to include analysis of the
gradient algorithm (i.e., with the choice I’(s) = 1/s), the gradient algorithm with leakage
(i.e., l_’(s) = 1/(s -1 a); u 2 O), proportional-plus-integral adaptation (i.e., I’(s) = kP + ki/s),
or arbitrary linear adaptation algorithms of the designer’s choosing. Adaptation laws which
are nonlinear or normalized (e.g., divided by the norm of the regressor), are not considered
here since they do not have an equivalent LTI representation I’(s). ■

REMARK 2.2 The use of the regressor filter F(s) is (2.3) allows the unified treatment of
many important adaptation algorithms including the well-known Filtered-X algorithm from
the signal processing literature [17], and the Augmented Error algorithm of Monopoli (cf.,
[13]). ■

2.2 Confluence Matrices and Overparametrization

Let c(t) ~ Rn be a bounded piecewise continuous signal vector, and let there exist positive
constants /31, ~2, T. >0 such that,

~, .l</’+TOc(T)c~(T)dT  s@2.1 (2.5)
t

for all t z O. Any signal c(i) which satisfies these properties is said to be Persistently Exciting
(PE) with bounds {1%, Pz, To} [11].

For the purpose of this paper, it will be assumed that the regressor x(t) ~ RN is linearly
related to such a PE signal c(t) as follows,

x = xc(t) (2.6)
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where X c RNxn.  It is also assumed that N Z n in (2.6), so that X is a “tall” matrix and
the adaptive feedforward system is overparametrized,

DEFINITION 2.1 The matrix  ~~x’ is defined as the confluence matrix associated with
a particular regressor x of the form (2.6). ,. ■

The name “confluence matrix” has been chosen to reflect the fact that N signal channels
seen at the output of the tall matrix X are effectively combined into a smaller number of n
channels (n < N) when forming X*X. The confluence matrix will play an important role in
characterizing the convergence properties of the overparametrized adaptive system.

Unfortunately, if the system is overparametrized the PE condition is impossible to satisfy.
This will be shown by example.

EXAMPLE 2.1 Consider the case where,

c(t) =

Letting TO = 27r/wo

[sin wOt,cosoOi, sin 2UOt,  cos200t, . . . . sin(mbd),cos(rnw.t)]~ (2.7)

and using (2.7) one can calculate,

(2.8)

Hence, the PE condition (2.5) is satisfied with /?l = ~z = TO/2.

Because of the form of c(t) in (2.7), any regressor z = Xc(t) will be periodic with period
T =

It is
with

27r/w.  One can check the PE condition by computing the autocorrelation  matrix,

/’+TOww)d~ = ~J’+T04T)cTw~~Tt
—— ;XXT

(2.9)

(2.10)

seen that the autocorrelation  matrix is essentially the outer-product of the matrix X
itself. Consequently, if the problem is overparametrized (i.e., N > n) the matrix X is

“tall”, and it is impossible for X~T to be positive definite i.e., it is impossible to satisfy the
PE conditions. ■

It is a common belief that along with the loss of PE, comes the loss of exponential
convergence. The main point of this paper is to show that this is not generally true, and
in fact the exponential convergence properties of the tracking error e (and the parameters
on a reduced subspace)  do not depend on the outer  product condition XX* > 0, but rather
depend on the inner product condition XTX > 0. This result shifts the emphasis in the
adaptive design from ensuring positive definiteness of the autocorrelation  matrix, to ensuring
positive definiteness of the confluence matrix. The main benefit is in the overparametrized
case where the inner product condition is easy to satisfy, while the outer product condition
is impossible to satisfy.

5



3 REGRESSOR REDUCTION TO PE

The next result shows that if the confluence matrix is positive definite, the adaptive feedfor-
ward operator ?f can always be reparametrized to have a PE regressor without changing its
input-output properties.

THEOREM 3.1 (Regressor Reduction to PE) Let the confluence matrix  associated with
the adaptive jeedforward system (2.1)-(2.5’) be positive definite,

22-X >0 (3.1)

Then,

(i) The input-output properties of the LTV operator W from e to j are invariant under
the change of variables,

q(i) = A-kl%(t) (3.2)

p(t) = A-* Rt?Tzo(f) (3.3)

Here, q G R’ and p E Rn are reduced-order regressor and parameter vectors, respectively,
and matrices P, A ~ Rnxn are defined jrom the eigenvalue  decomposition oj the confluence
matrix,

X TX = PTA P (3.4)

A = diag{~l,...,  ~n} >0 (3.5)

where PT = P-l, and it is assumed that the eigenvalues  are ordered as Al > . . . > J. > 0.

(ii) The reduced-order regressor q c Rn is PE with the bounds,

for all t z O,

PROOF:

Proof of (i)

J t+To
p,An . I < q(7)qT(7)d~  < &A1 .1 (3.6)

t

where /?l, @z, To are defined by the PE condition (2.5) for c(t).

The proof follows simply by the superposition and scaling properties of linear
operators. As such, it can be proved graphically. Consider the sequence of block diagram
rearrangements shown in Figure 3.1. Specifically, Figure 3.1 Part a. shows the initial adaptive
system with overparametrized regressor z; Part b. shows the matrix X pushed through several
scalar matrix blocks of the diagram; Part c. replaces the confluence matrix by its eigenvalue
decomposition X~X = PTAP; Part d. pushes the matrix factor A*P  back through several
scalar matrix blocks. The resulting block diagram is driven by the regressor ? which related
to c by the nonsingular

Proof of (ii) Define,

transformation q = A:Pc,  and hence is PE.

J’f =  /’+TOWTT(W~t

6
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Substituting q = A*Pc into (3,7), gives

~= A*P/’+TOC(,)CT(T)d@TA+t ,.

Using the PE property of c(t) in (2.5) and (3.5) gives,

6(M) < p2Al

g(fw)  > plAn

which is equivalent to (3.6) as desired.

c(t)
a) +’

~

c(l)
b)

bF(s)

(3.8)

(3.9)

(3.10)

■

c )
c( t )

I

d)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!’+ . . .

.

—. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.1: Proof of Theorem 3.1 by Block diagram rearrangements

In order to use the result of Theorem 3.1, the overparametrized regressor x G R~must
satisfy the decomposition ~(t) = XI C l(t) for some matrix Xl 6 RN X”, and some PE signal
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vector c1 E R“. Fortunately, inmanyapplications  such a decomposition is straightforward
to find. Consider the next example.

EXAMPLE 3.1 (Harmonic Regressor)

It is common for the regressor x to have a harmonic form, i.e., where its elements
composed of linear combinations of m sinusoidal frequencies {w: }~1. For this regressor,
signal c1 can be chosen of length 2m having elements,

cl(t) = [sinwli,  coswlt,  . . ..sinw~t. cosw~t]~  E R2m (3.

are
the

11)

This construction guarantees the existence of a matrix XI < R2”’ in the desired decomposition
z = Xlcl(i). ■

Given matrix Xl and PE signal c1 such that z = XIcl(i), the confluence matrix X~X1 may
or may not be positive definite. Remarkably, it turns out (neglecting the trivial case where
X = O), that the confluence matrix can always be made positive definite by transforming c1
io a reduced-order C2. To see this, consider the singular-value decomposition of Xl,

where the matrices
as, U = [U.l Ub], Z
~.>oand~b=().

xl = UZVT (3.12)

U E RN x 2 m , Z c R2mx2m and V E R2mx2m are partitioned compatibly
= diag{&, ~b} and such that if the confluence matrix is singular then
Define 2’2 = U= and extract C2 from the equality [c2(t)10]T  = E. VTcl(t).

Then x = X2cz(t)  and X~X2 >0 as desired.

In summary, if a regressor is representable in the form z = Xlcl (t) for some PE signal
c(t) then it either it has the positive definite confluence matrix X:X1 > 0, or by reduction of
c1 to C2 is transformable to the form x = X2c2(t)  with PE signal c2(t), which has the positive
definite confluence matrix X:X2 >0. In either case, the confluence matrix is positive definite
and the results of Theorem 3.1 indicate that the operator W can be reparametrized to have
a PE regressor.

REMARK 3.1 When the regressor has the harmonic form x = Xc for c of the form
(3.1 1), it sometimes turns out that the mapping 7-t is purely  LTI. This remarkable property
considerably simplifies the analysis, and lies at the heart of Glover’s  approach in [9]. It has
been found recently [3] [4] that this LTI property occurs if and only if the confluence rnatriz
has a pairwise diagonal structure, i.e.,

XTX = @ (3.13)

where,
D2 = diag[d~,  d~, d~, d~,..., d~, d~] (3.14)

This property also underscores the importance of the confluence matrix for characterizing
overparametrized adaptive systems. D
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The input-output properties of ?-i play a critical role in determining the convergence
properties of the tracking error e in closed-loop. The result of Theorem 3.1 is important
becuase  it shows that the input-output properties of the operator H (even overparametrized)
are identical to one which is reparametrized to have a (reduced-order) PE regressor. Given
such a PE regressor, many proofs of exponential stability and robustness exist in the literature
(cf., [11][13][14]). As applied to the present case, these proofs ensure exponential convergence
of the tracking error (and the parameters on a reduced subspace)  in closed-loop, and retention
of certain robustness properties which are invariant under the internal reparametrization of
?f (e.g., such as boundedness with respect to additive bounded noise disturbances in e).

It will not be possible to delineate all possible ways to prove exponential stability given a
PE regressor, since the proofs are algorithm specific. Instead, the adaptive gradient algorithm
is chosen in the next section as a simple and representative algorithm to examine these
exponential convergence properties in more det ai 1.

4 EXPONENTIAL CONVERGENCE

In this section, exponential convergence with overparametrization is examined for the adap-
tive gradient algorithm.

4.1 Adaptive Gradient Algorithm

Let the y(t) E R1 and z(t) G RN, be known signals and assume there exists a constant

parameter vector w“ E RN such that,

y(t) = w%(t) (4.1)

for all t >0. Uniqueness of w“ is not required (i.e., the system can be overparametrized).
An estimate j of y is constructed as,

j = ?l@x(i)

where w(i) is tuned in real-time using the adaptive gradient
in (2.2) and F(s) = 1 in (2.3) ).,

zi) = px(i)e(t)

with adaptation gain p >0. The tracking error is defined

e(t)  = y(i) – j(t)

and the parameter error is defined as,

~(i) = w“ - w(i)

9

(4.2)

algorithm [13] (i.e., set I’(s) = 1/s

(4.3)

as,

(4.4)

(4.5)



Using (4.1)(4.2)(4.4)(4.5), the tracking and parameter errors can be related as follows,

e = #Tz(t) (4.6)

Assuming that the true parameter zo” does not vary with ‘time, (i.e., ti” = O), it follows from
(4.3)(4.5) that,

$ = W“ – Ii) = –pxe  = –pzxT(j (4.7)

‘I’his equation characterizes the propagation of the parameter error.

4.2 Exponential Convergence Properties

It is convenient at this point to review a well-known stability argument. Define the Lyapunov
function candidate,

v = ;qm (4.8)

Taking the derivative of (4,8) and using (4.1)-(4,7) yields,

V = –/LC~TX  = –pe2 <0 (4.9)

This proves that ~ remains bounded. If z is bounded, then ~om  (4.6) the error e remains
bounded. Furthermore, if x is bounded, then V is bounded, V is uniformly continuous, and
Barbalat’s lemma ([13], pg. 85, and 276), can be applied to ensure that limt-w e = O. This
well known argument ensures that the error converges to zero as desired.

While the above argument ensures that e converges to zero, it does not indicate how fast
it converges. Additional conditions such as persistent excitation are typically imposed which
ensure exponential convergence of e to zero.

Persistent excitation conditions in adaptive algorithms have been studied by many re-
searchers. Early results can be found in Astrom and Bohlin  [1] where the PE condition is
expressed in terms of positive definiteness of the autocorrelation function formed from the
regressor. Subsequently, Bitmead and Anderson [8] proved that parameter convergence is
exponential when PE conditions are satisfied in the adaptive gradient algorithm and the nor-
malized adaptive gradient algorithms. Explicit upper and lower bounds on the exponential .

response can be found in [16]. A general discussion of the PE condition is given in [7] and
an effort to unify many definitions can be found in [18].

As an example, consider the case without overparametrization (i.e., N = n), so that
z(i) c l?’ is bounded and PE satisfying, say,

Ilz(i)ll  <Z< cm; for all i ~0 (4.10)

(4.11)
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for some crl, a2, 6 > 0. Then it is well known (cf., [13][14][11]), that the error e converges
exponentially. Specifically, there exist constants p. ~ O, a > () such that,

The precise expression for a is given in Lemma A. 1 of Appendix A as,

()–~ln ~
‘–26 1–CY3

(4.13)

1

() T
po= _--!_

l–o~ “ Ilf?(o)ll (4.14)

2po~

‘ 3 = (1  +pa,/ii)’
(4.15)

The convergence rate cr in (4.13) is a function of p through the expression (4.15). For small
p the rate can be approximated by,

~=p
6

(4.16)

The fastest convergence rate is found by optimizing o in (4.13) with respect top. Specifically,
the condition da/dp = O can be solved to give the optimal gain as,

1~“=— (4.17)
cr’fi

Substituting (4.17) into (4.13) gives,

““= M-3A) (4.18)

It is seen that the optimized rate Q* improves monotonically with the ratio crl/az.  This ratio is
precisely the reciprocal condition number of the autocorrelation matrix (4.11), and motivates
keeping this condition number as close to unity as possible for fast convergence (assuming it
is optimally tuned with p“).

Exponential convergence
ined next.

for the overparametrized adaptive gradient algorithm is exam-

THEOREM 4.1 (Overparametrized Adaptive Gradient) Assume there ezists a w“ c
RN such that (4.1) holds for all t ? O, and that the adaptive gradient algorithm (4.2)-(4.7)
is used to tune w, giving the following error system,

e = ~T~ (4.19)

d =  -PxxTd (4.20)
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Let c(t) G Rn be a bounded piecewisc  continuous signal vector which is PE, i.e., let there
exist positive constants ~1, ~2, TO >0 such that,

OIO~S/t+TOC(~)C(~)T~~  SP2~;@a~~t20 (4.21)
t

Ilc(t)ll <?< cm; for al~t ~ O (4.22)

Let the regressor x(t) c RN be linearly related to the PE signal c(t) as follows,

~ = xc(t) (4.23)

where X E RN X’ and N 2 n (i. e., the system can be overparametrized).  Let the con~uence
matrix be positive definite,

XT% >0 (4.24)

and let the eigenvalue  decomposition of the confluence matrix be given as,

XTX = PTAP (4.25)

A = diag{~l,...,  ~n} >0 (4.26)

where PT = P-l, and Al 2 . . . ~ & > 0.

Then,

(i) The error system (4. 19)(4.20)  can be written equivalently as the reduced system,

e = rTq (4.27)

i = –pqqTr (4.28)

where the reduced regressor v G Rn and parameter error r E Rn are given, respectively, by,

q = A~”Pc(t) (4.29)

(ii) The reduced regressor q ~ R’ is PE with the bounds,

for all t ~ 0.

(iii) The tracking error e and reduced parameter error r converge to zero exponentially as,

I]rl] < p~e-~t (4.32)
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where,

(4.33)

(4.34)

(4.35)

(4.36)

Letting p be suflciently  small (i. e., such that p << l/(~zAITO@)), gives,

a E p~lA./TO (4.37)

po =’ (1 +PPIAa)ll~(o)ll (4.38)

PROOF: .
Proof of (i): Using the transformed vectors q and r, the error equation (4.19) can be written
as follows,

(FZ = (jVYc(i) (4.39)

&XPTA-*A~Pc(t) (4.40)

rTv (4.41)

which is (4.27) as desired. Likewise, for the adaptation law (4.20) one has,

4 =  –PXXT$  =  –PXCCTX’T4 (4.42)

Multiplying both sides of (4.42) on the left by A-~ PXT gives,

A-~PXT$ =  –@-~PXTXccTXT~ (4.43)

= –l~A-i PPTAPccTXT~ (4.44)

—— –pA~PccTXT~ (4.45)

—— –pA~PccTPTAkA-~PXT~ (4.46)

Substituting (4.29) and (4.30) into both sides of (4.46) gives,

~ = —pqqTr (4.47)

which is (4.28) as desired.
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Proof of (ii): Identical to Proof of (ii) of Theorem 3.1.

Proof of (iii) By Part (ii) the reduced regressor q in (4.29) is persistently exciting. It
follows from Lemma A. 1 of Appendix A that the reduced error system (4.27)(4.28) converges
exponentially. In light of the PE bounds in (4.31), Lemma A.1 can be applied with O1 = ~l~n,

a2 = @2AI, 6 = ~. and Z = ~~t to give results (4.32)-(4.38) as desired. ■

4.3 Discussion

Intuitively, the persistent excitation conditions are eliminated in Theorem 3.1 by avoiding
the need for convergence of the full parameter vector w in the proof. Rather, the ‘(degree” to
which the given regressor x is persistently exciting is indicated by the size n of the vector c(i).
The parameter error vector # is transformed to become the smaller vector T = A-; PX~@
where r E R’ is defined on a subspace which is excited persistently. Since the regressor q
associated with r is persistently exciting, the reduced error vector r converges exponentially,
which from (4.27) ensures exponential convergence of e.

In light of 4.1 it reasonable to examine the penalties incurred from overparametrization.
As mentioned above, the first issue is that the parameters converge on a subspace  rather than
over the entire space. However, this is only a penalty if the adaptive system is being used
for parameter estimation properties. In fact, for parameter estimation there is often no other
choice but to use a minimal parametrization or to increase the richness of the excitation. In
contrast, full parameter convergence is not an issue in applications which use the adaptive
feedforward system for its tracking properties i e, . ., where convergence of e to zero is the main
consideration.

The second penalty, is that the exponential rate of convergence is degraded. This effect
will be examined more closely. If one constructs the ideal regressor as z(t) = c(t)  then the
regressor is PE with parameters {~1, /32, TO} and one would achieve an optimal exponential
convergence of (set (al = ~1, a2 = /?2, 6 = T. in (4.18)),

a“=+’n(d%) (4.48)

However, if the regressor is overparametrized as z = Xc(t), then Theorem 4.1 part (ii)
indicates that the PE parameters of the equivalent reduced-order regressor q are degraded

“ to /31&, /72J1, TO. This modifies the optimal convergence rate to,

1

(

1
a “ = — i n

26 h.~1–3%”02 )
(4.49)

i.e., the rate is degraded by (a monotonic function of) the ratio ~n/~l.  This ratio is precisely
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the reciprocal of the condition number of the confluence matrix X~X, denoted as,

A AlK(XTX) = y (4.50)
n ,.

In words then, the optimal exponential convergence rate for an overparametrized adaptive
system degrades (compared to the jull PE case) in monotonically with the condition number
oj the conj?uence  matrix.

The reader is warned that the condition number (4.50) can be quite large. In fact, most oj
the bad experiences that researchers have with sluggish convergence of overparametrized adap-
tive systems can be traced to this quantity. The usual tendency is to blame overparametriza-
tion and lack of PE. However, the main point to be made here is that, on the contrary,
overparametrized systems have exponential convergence just like full PE systems, and can
provide good performance if care is taken to ensure that the condition number (4.5o) is well
behaved.

To better assess the important issue of convergence rate degradation due to overparametriza-
tion, the condition number of the confluence matrix will be examined in more detail in the
next section on a specific problem of practical interest.

5 SINUSOIDAL TDL REGRESSORS

In this section, the confluence matrix condition number is explicitly bounded in the case of a
Tap Delay-Line (TDL)  regressor with sinusoidal excitation. The main reason is to evaluate
the amount of rate degradation expected from overparametrization in a system which is used
quite often in practice. This is precisely the adaptive system studied by Glover in [9], and
the results can be directly compared.

5.1 Bounded Tone Sets

DEFINITION 5.1 Given time delay T and spacing parameter O < c < x/2, a Bounded
7one Set C?(m, T, Z) is defined as any set Oj m frequencies {~i}~l, such that,

(5.1)

■
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Simply stated, a Bounded Tone Set is a set of frequencies {~i}~l  which are bounded
away from O, m/T and each other. The definition is not very restrictive since any signal
comprised of a finite number of distinct sinusoids lies in a Bounded Tone Set when T is
chosen sufficiently small (i.e., to ensure Nyquist sampling of its highest component). The
essential need for Definition 5.1 is to define the minimum  tone spacing parameter K which
will play a critical role in subsequent results.

5.2 TDL Background

Let the components of the regressor z = [zl,..., x~]~ c RN be defined by filtering a signal
~(t) c R1 through a Tap Delay-Line with N taps and tap delay T, i.e.,

where the measured signal f is given by the following sum of m sinusoids,

((t) = S Ci Sin(tiit + Q:) (5.3)
i=l

m

= E (lil SiIl(Ldit) + Ui2 COS((Jit) (5.4)
icl

and where ail = Ci cos pi and ai2 = Ci sin Pi. Assume that the signal ( in (5.4) is comprised
of frequencies ~i lying in the bounded tone set,

{~i} E ~(~, T,u)

for some O < F < ~/2.

It is shown in [3] that the TDL regressor z(t) in (5.2) can be written in form,

x = xc(i)

c(i) = [sin(oIi), Cos(wlt),  . . . . sin(w~t),  cos(ti~t)]  E R2m

where the matrix X’ ~ RNx2m satisfies,

X = Q A

Q = [S,, C,,..., Sm, Cm] E RNx2m

St = 1 I’RN; ci=[cOsikYwT)~’RNsin(~iT)

sin((N – l)~iT)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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[1

A I O O

A= () ‘.. o ~R2mx2m
O O Am

“=[:: ::2+R2 X2’ 2=”-
The following result istakenfrom [3] without proof.

LEMMA 5.1 Let Q,~andm  beasdejnedin (5.2)-(5.11). Then,

PROOF: see Theorem 7.1 and Appendix B of [3].

(5.11)

(5.12)

(5.13)

■

5.3 Properties of Confluence Matrix for TDL Regressors

The desired properties of the confluence matrix are given in the next result.

THEOREM 5.1 Let the components of the regressor x = [xl, . . . . XN]
T c RN be defined by

filtering a signal f(t) E R1 through a Tap Delay-Line with N taps and tap delay T, i.e.,

xe=e ‘(’-’)PT(, ./?= 1, . . ..N (5.14)

where the measured signal [ is given by the following sum of m sinusoids,

f(t) = 5 Ci Sin(bJit + Pi) (5.15)
i= 1

and frequencies {~i}~l  lie in a bounded tone set fl(m, T, ~). Let the number of taps N be
sufficiently large to satisfy,

N>~
g

(5.16)

Then, the maximum eigenvalue  Al, minimum eigenvalue A2m,  and condition number K of

the confluence matrix XTX for the TDL regressor (5.6)-(5.12) are bounded as follows,

(5.17)

(5.18)

(5.19)
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where C~aZ ~ maxi{C’i}  and C~in ~ mini{Ci}

PROOF:

Equation (5.17) is proved as follows, ,.

6(A%Y)  =  ti(ATQTQA) (5.20)

< =2( A)6(QTQ) (5.21)

= C:a= . 6(QTQ) ( 5 . 2 2 )

= C:ar +++QTQ+) (5.23)

~ C;az . (6(; .1) + F(QTQ -:. 1)) (5.24)

(5.25)

Here, equation (5.20) follows by substituting (5.8); equation (5.21) follows by properties of
singular values; equation (5.22) follows from the structure of A in (5.11) and (5.12) combined
with the fact that A~Ai = Ct2 “ 122 (and hence ~(Ai) = ~(Ai) = Ci)l and the definition of
c~az, Cmin; equation (5.23) follows by adding and subtracting the term #” 1; equation (5.24)
follows by a property of singular values; and equation (5.26) follows by Lemma 5.1, which is
the desired result (5.25).

Result (5. 17) is proved by the following similar sequence of steps,

c(A?Y) =  C(ATQTQA) (5.26)

> ~2(A)Q(QTQ) (5.27)

= C~in . ~(QTQ) (5.28)

(5.29) <

> C:in w(; .1) –~(QTQ– :.1) (5.30)

~ Clin “($ -~ ) (5.31)
—

Result (5.19) is proved by using results (5.17) and (5.18) as follows,

5(XCY)
K(AZ%’)  s

g(x~x)
(5.32)
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(5.33)

(5.34)

It has been tacetly  assumed in (5.33)-(5.34) that the denominators will not be negative.
This can be enforced rigorously by choosing the number of taps sufficiently large to satisfy
N > ~, which is the stated condition (5.16) on N. ■

The results of Theorem 5.1 indicate that,

1.

2.

3.

As the number of taps N becomes large, (5.19) indicates that the condition number of
the confluence matrix is bounded by the worst-case tone amplitude ratio &. This

mtn

is essentially the limiting penalty for TDL overparametrization with a large number
of taps, with regard to degrading the rate of exponential convergence of the tracking
error.

Since the limit ~ is achieved quickly as N begins to dominate ~ in (5.19), one ap-
proaches ‘(dimini~~lng  returns” and there is no practical reason to ~ncrease  the number
of taps in the TDL to, say, larger than N = 10~. This gives a useful guideline for
choosing the number of taps in the overparametrized TDL (this can otherwise be a very
confusing choice in practice).

For the TDL regressor with sinusoidal excitation, it has been shown in [6][3] that,

$xTx . D2 + A (5.35)

where D2 is pairwise diagonal of the form,

D2 = ~diag[C~  “ 12.z,...,  C~i o IM] (5.36)

and A is a perturbation which is norm bounded as,

m7rC~~z
5(A) ~

2Ng
(5.37)

Hence as the number of taps becomes large, the TDL confluence matrix (assuming the
adaptive gain is normalized as p = F/N), approaches the pairwise diagonal matrix D2.
As pointed out in Remark 3.1, this is precisely the form needed to ensure that the
adaptive system is LTI. Hence for a large number of taps, the stability analysis reduces
to examining pole locations of Laplace transforms. This was precisely Glover’s  approach

19



in [9]. However, the need for the confluence matrix to be pairwise diagonal is somewhat
restrictive (i.e., for the TDL case this requires an infinite number of taps), compared
to the main results in the present paper which only require that the confluence matrice
is positive definite. ,.

4. The dependence of the condition number bound (5.19) on the inverse of K indicates
that more taps N are required to “resolve” more closely spaced tones, This intuitive
notion has been discussed heuristically in the literature (cf., Glover [9]). The analytical
result (5.19) makes this dependence explicit.

5. The dependence of (5.19) on m indicates that more taps N are required to “resolve”
more tones. This observation appears to be new.

6 CONCLUSIONS

The main results of the paper show that if the confluence matrix is positive definite the adap-
tive feedforward operator ?-i from the error e to the estimate j is input-output equivalent to an
adaptive system with a PE regressor. This implies that tracking error convergence is exponen-
tial for a large class of overparametrized adaptive feedforward systems. Furthermore, certain
robustness properties of PI? systems which are invariant under this internal reparametrization
of W (e.g., such as boundedness with respect to additive noise disturbances in e) carry over
to the overparametrized case.

These results generalize the results of Glover  to a wider range of regressor basis functions,
excitations, and adaptive algorithms. The results also emphasize the role of the confluence
matrix (rather than the autocorrelation  matrix) in determining the convergence properties
of overparametrized adaptive systems.

It is concluded that the main penalty incurred from overparametrization is that the op-
timal rate of exponential tracking error convergence is degraded by the condition number of
the confluence matrix. While this condition number can be quite large and lead to sluggish
performance, it does not invalidate the overparametrization approach. On the contrary, now
that it is known that overparametrized adaptive systems have exponential convergence just
like full PE systems, they can be designed to have comparable performance if care is taken
to ensure that the condition number of the confluence matrix is well behaved.

Properties of the confluence matrix were examined in detail for the special case of a Tap-
Delay Line regressor with sinusoid excitation. A bound derived on the condition number
of the confluence matrix indicates the effect of the number of taps, number of tones, tone
spacing, delay time, etc. on the degradation of the optimal exponential convergence rate.
Interestingly, as the number of taps increases, a limit is reached which depends on the ratio
of magnitudes of largest and smallest tone amplitudes in the regressor. This is essentially
the limiting penalty for TDL overparametrization with a large number of taps. The formula
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also indicates “diminishing returns” for adding taps beyond a certain point. This provides
a simple rule of thumb for determining the number of taps in practice. In the limiting case
where the number of taps goes to infinity, the confluence matrix becomes pairwise diagonal
which implies that the adaptive system is L’TI. This com,p)etely  recovers Glover’s results as
a special asymptotic case of the present analysis.
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A APPENDIX A

LEMMA 1 (Sastry  and Bodson [11]) Consider the error equation,

e = ~TX ( A l )

4 =  –PXZT4 (A.2)

where g$(t),  x(t) E R“. Let x be a bounded piecewise continuous function of t such that,

llx(t)ll  <Z< 00; for all t >0— (A.3)

and let there exist constants al, cr2, 6>0 such that the following PE condition is satisfied,

J t+6
all < r(i)z(t)~dt  s CY21, for all t >0 (A.4)

t

Then the system (Al )(A.2)  is globally exponentially stable, i.e.,

11411 S pOe-ot (A.5)

[e[ < p~~e-a’ (A.6)

where.
1 1

( )
~ . — l n  _

26 1–03

1

( )

+

‘ 0 =  1–03 “ 114(0)11

2/LcYl

‘3= (1+ pcqfiy

Letting p be sufficiently small (i.e., such that p << l/(a2@)), gives,

(A.7)

(A.8)

(A.9)
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po ~ (1 +W)I14(0)II ( A l l )

PROOF: The proof follows directly from the development in Sastry and Bodson [14]
pg. 73-75 (see in particular Theorem 2.5.3) specialized to’ the gradient adaptation algorithm
(A.l)(A.2).
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